YYP on FIRE
  • 關於我
  • F.I.R.E
  • 閱讀筆記
  • 學習筆記
  • 投資
  • 交易
  • Travel
YYP on FIRE
  • 關於我
  • F.I.R.E
  • 閱讀筆記
  • 學習筆記
  • 投資
  • 交易
  • Travel
Tag:

冠軍策略

gray and gold steel gears
投資

[雙動能投資]如何抗通膨?

by yyp20 6 11 月, 2022

不管原始雙動能或者改良版的加速雙動能,持有的資產都是股和債,在高通膨的環境下,股債雙殺再正常不過,但真的無可避免嗎?

雙動能在高通膨環境下的應對方式有以下六種:

  1. 相信系統,不管它。
  2. 用持有不同資產的策略去分散風險,比如持有原物料或石油。
  3. 出場資產用相對強度去搭配,國債大跳水就持有抗通膨債。
  4. 提高整個投資組合的現金比重,讓拉回小一點。
  5. 像全天候組合一樣加入黃金和原物料,來降低標準差。
  6. 使用原始雙動能的設定。

可以依個人的判斷,來選擇適合自己的方式使用。

1. 相信系統, 不管它。

在不同的景氣環境下,雙動能策略都有他會漲的商品,唯獨在高通膨之下卻會通殺,加速雙動能會更痛:

(1)高成長, 高通膨–>漲新興股, 就是SCZ

(2)高成長, 低通膨–>漲已開發國家股, SPY

(3)低成長, 低通膨–>漲長期國債和金, TLT..景氣衰退時期,利率下行。

(4)低成長, 高通膨–>就是今年,漲原物料,黃金在實質正利率後被殺到見骨 ; 高通膨殺股殺債的前例, 1973年石油禁運,大盤跌了50%.

純粹的雙動能策略對上高通膨環境,因為持有的不是股、就是債,在特定的景氣環境下很不利, 這也是傳統股債配置策略的硬傷,

然而,由於高通膨的時期在歷史上不是那麼久,持有總體債市,就算在下跌時期,波動性也比股市小,適當的配置比例之下,傳統股債配仍然能夠在下跌時表現相對抗跌,讓投資人撐過去,

要是加速雙動能,不是百分之百國債,就是百分之百股市,高通膨升息的狀況下,只能硬扛,如果你開槓桿就會更加考驗信念。

各種經濟景氣狀況適合持有或會漲的資產
各種經濟狀況適合持有的資產

2. 用持有不同資產的策略去分散風險,比如持有原物料或石油。

在投資組合中,使用多個雙動能策略,分散因子、國家、商品別、週期,盡量不要有同時抱同一支,又遇到不適合的環境這樣的情況, 那會殺到翻過去, 特別是出場資產的部份,若持有標的都一樣,如果遇到特定資產暴跌,這樣閃都閃不過。

理想狀況是改善之後的組合標準差更小、夏普比率、Sortino ratio都變好了, 變得更穩定,不暴起暴落,以人性來說, 這樣平穩些的組合長期比較容易執行下去。

阿批有些很暴力的組合,搭配槓桿型ETF,年報酬40~50%, 但是標準差也30%以上,大盤的標準差大概只有它一半,這種賺的時候很生猛,一回檔就是腰斬,真的不適合像我這種心臟不好的老人家放比較大的部位…

3. 出場資產用相對強度去搭配,國債大跳水就持有抗通膨債。

讓出場資產也可以轉換,當高通膨時股市不好,國債因為升息慘兮兮的時候,加速雙動能也會很慘,若能變成持有抗通膨債券可以讓自己有進到避風港的感覺,

如此可以在通膨時持有抗通膨債; 在通縮時,國債表現更佳,兩邊得其益處。

使用簡單的相對強弱去搭配當單一絕對動能,每個月比較,上個月國債強,就持有國債,若抗通膨債強就持有抗通膨債即可。

4. 提高整個投資組合的現金比重,讓拉回小一點。

依個人的風險承受度,保留一定比例的現金,比如留10%的現金,剩下的90%部位持有加速雙動能或其它雙動能組合,這樣波動會比較小一點,有現金在手,心中會有一定的安定感,

但相對的,市場好時,整體報酬也會受到影響,就看個人承受度到哪裡,來調整配置方式,但如果一直在調整,可能會有好賺時賺不到,一調下去剛好吃到賠錢段的狀況,要注意心態的安定喔。

5. 像全天候組合一樣加入黃金和原物料,來降低標準差。

把組合中加上抗通膨的金、原物料、抗通膨債, 用核心/衛心的方式應該是個不錯的方法,感謝Ray Dalio,他的”全年候組合”中,除了美國股市、美國20年期國債、美國10年期國債,

也加入了7.5%原物料和7.5%的黃金,用來應對高通膨的環境,不同於股市和債市在高通膨時會殺爆,這二者在高通膨、實質負利率的環境下比較會上漲,

因此可以持有一個雙動能組合,可能佔70%資金,剩下的30%放金和原物料也是一種選擇。

6. 使用比較保守的原始雙動能設定

雙動能的創始人Gary Antonnaci的出場設定是使用”美國總體債市”,轉換週期是12個月,後人改良的時候,把轉換週期縮短,出場資產也改成了更具波動性的”美國20年期國債”,對於高通膨也更加敏感。

若投資人對於加速雙動能的設定覺得太刺激,那麼使用原始版本的出場資產也是一種選擇,

的確使用總體債市的報酬不如用20年期國債,但投資中,如果投資的商品波動超出投資人的心理承受度,那麼長期報酬再高的方法,也一樣會被提前出場、或放棄掉的,

特別是用來資產配置的策略,很常是ALL IN、整個身家都在裡面的狀況,波動性大,下跌時考驗就會更大,

這也是生命循環投資很難執行的原因:作者說人們可以在生命早期開2倍槓桿投資,到後期再降下來到83%股票,這代表投資人要承受雙倍的波動,最痛苦時資產會剩3成不到……

反正阿批我自知是扛不住啦…..

投資到後來,都是考驗心性,請務必要挑選最適合自己,就算天塌下來,晚上也要能睡得著才算OK喔。

本文原始刊登於”阿批的自由路”,如果在任何其它地方出現,即為未經授權之轉載。

以上僅為個人的研究心得,不做任何獲利之保證,實際下場需自行研究清楚。

6 11 月, 2022 2 comments
1 FacebookTwitterPinterestEmail
white printer paper
投資

學投資從何處開始? 分享我做過的5種方法

by yyp20 30 10 月, 2022

想要財務自由就要學投資,你會發現坊間的投資方法琳琅滿目, 不知從何處下手才好? 同樣下跌,有人說要抄底、有人說落下的刀子不要接,誰是對的? 有人說像巴菲特一樣買進一張股票就要持有十年以上, 有的人卻在一天內進出好多次,究竟要聽誰的?

學投資可以從相對簡單的被動投資開始,再慢慢擴及到其它方法,本文分享5種投資方式,投資的邏輯、思維大不同,各有千秋,自成一派,初學投資聽到屬於不同派別的人,用的語言也不一樣,有時還會互相衝突,搞得人很亂,這裡就以阿批的經驗,由易到難,供大家參考:

方法/商品別被動投資ETF量化投資價值投資交易類(股票、外匯保證金)
難5–>易11245

被動投資>ETF量化投資>股票量化投資>價值投資>交易類(股票、外匯保證金)

在這裡對於”投機”和”投資”不去做定義上的爭辯,畢竟工具是死的,人是活的,怎麼用在於人,市場待久了就會了解,每個人適合的工具、作法都不一樣,這是一個新手必須要花時間去探索的。

1. 被動投資:

指數長期上漲,所以投資人只要固定投入資金,取長期平均成本即可, 賺取市場報酬,投資人要做的是每年重新調整持股比例即可,時間拉長到15年以上,賺錢的機會高於9成。

坊間對於被動投資的概念幾乎都是美股為主, 主要也是美股發展的時間長,市場也比較成熟,台灣市場商品比較少,最簡單的玩法就是0050無腦定期定額。

對於新手,這一塊是相對簡單上手的,時間久了,複利報酬相當可觀。

這一塊我推薦看: Youtuber 清流君,及綠角的部落格。

2. ETF雙動能投資:

也是我自己最愛用的,這是Gary Antonacci,哈佛出來的美國人創的方法,基本邏輯是他用一套簡單的切換方法,可以選擇美國全市場ETF、美國以外市場ETF、美國債券市場ETF之中最可能持續上漲的那一支持有。

比如2008年,股市大崩盤,雙動能投資法會持有當時大漲的債券ETF,於是投資人可以閃過大跌,就不用等股市慢慢漲回來。

他很簡單,一個月只要看一次就好,報酬可以贏大盤,算是很老少咸宜的方法,而且可以自己客製,非常方便。        

以上想了解得多, 可以讀我這一篇:  [雙動能投資]-讀書心得及摘要

原型ETF的作法,可以看這一篇:3種有天壤之別的美股ETF投資法

3. 價值投資:

大家耳熟能詳的巴菲特,這種作法是給股票一個估計的”價值”,當股票的市價低於價值就表示很便宜可以買進,巴菲特比較偏向找簡單可理解的生意,買下來跟喜歡的經理人長久共事。

這是台灣的主流派之一, 有的人會叫他存股,實際上主動選股操作的一種,實務上需要一段時間去建立知識體系,及吸取操作經驗,持股週期很長,

你可能需要幾年,經過了多空經歷,才知道自己的做法是否有效?信念夠不夠堅定,會不會在下跌時整個慌了手腳?的的確確會考驗到信仰。

你必須具備有解讀公司營運的能力,包括財報、產業特性分析、產品生命週期、政策走向…等等,

如何可以找到已經成功的前輩當Mentor,在投資的路上能少些迷惘吧!

想了解巴菲特可以讀: <巴菲特傳—雪球>,網路上Google也有不少人在介紹。

在GuruFocus網站,你可以看到波克夏的持股變化,個人建議研究巴菲特時,可以搭一下當下美股的市場環境來看,再看看他當時的資金體量,

比如巴菲特1950年代,二十幾歲就用股票+代操賺到百萬美金,跟他現在動輒千億美元的資金體量,時空背景不同了, 作法也會有差異。

深入來看,相信能更了解巴菲特的投資邏輯。

4.股市量化投資:

這個做法有大量的歷史資料回測可以看, 也有許多學術研究資料,投資人可以先行了解可能的市場狀況,有憑有據的進市場,出手會比較有把握。

Joel Greenblatt的神奇公式,是比較簡單的切入點,他試圖去把價值投資的東西量化,作法很簡單,每季財報出來,依他的規則篩選一下,一年換一次股就可以了,

Andreas F. Clenow的<賺贏大盤的動能投資法>裡面實際示範了一個量化投資組合,比起自己做一個量化模型,這種有人已經驗證完成的策略,也是比較容易參考上手的。

想要更好的績效,可以從規則挑出來的個股再去深入研究公司,或者用一些基本的技術指標,像是季線來增加獲利。

5. 外匯保證金(FOREX):

交易類東西,以賺價差為主,進出的頻率,短到幾分的跳動,長到數週數月都有人做,投資人需要自己去找到適合自己的方法。

方法各種各樣,有的人可以只看價格,有的人喜歡加上指標或參考數據,有的人純手動操作,有的人寫程式作。

商品有海期、外匯保證金、CFD都是高槓桿的商品,就算用股票的進出頻率也會比長期投資遠遠高得多,練得好,的確可以比一般投資好賺很多,

交易要有練個幾年的心理準備, 交易紀律的報行跟心理面的情緒控制會是很大的關鍵,不管是小時候留下來的信念影響、還是你面對盤面波動的貪跟怕,

在阿批交易過一段時間之後,每每會在該下的時候不下, 或者沒賺到就想改SOP,不然就是賠錢就開始苛責自己,這些來自心理上的因素影響績效甚大,也花了一些時間克服。

交易心理方面的書,阿批看過最鉅細彌遺<交易者的101堂心理訓練課>,作者自己是心理醫生又做交易,寫得很接地氣。

老余推薦的<我靠吸引力法則賺到3千萬>及Mark Minervini的<冠軍思維>也是好書,這些書都是專業交易者寫的,對於交易者的應有怎樣的思維、如何建立,有很好的參考價值。

股票交易方面, 想要用股票賺價差,Mark Minervini的<超級績效>系列把作法、觀念寫得非常具體,值得一讀。

要具體的來學交易方法, 國內我推薦老余, 他主要是做海外期貨的,但他的方法也可以用在任何有技術線圖的商品,股票/期貨/Forex/ CFD/ 虛擬貨幣。

他的特色只看技術線圖,不用任何技術指標,他有在Yotta開課程,不過他也說把他的直播看一看也就會了,也是講得也直白不藏私,

凡.沙普博士的<<交易,創造自己的聖盃>>及海龜系列的文章對我在建立自己的體系上所需的觀念,有極大的幫助,特別是交易系統、期望值、風險控管,

這讓我在後來面對一些主要教策略的課程,因為知道要做回測的動作,無形中幫助我在交易市場中存活了下來。

結論

建議是大部份的資金可以放在被動投資或是量化的部份, 少部分來做主動操作的部份, 做起來再來加大資金,如果在技術、心理還不是很成熟時就重押,很有可能會受重傷的,

即使是價值投資,在崩盤時也會在心理上造成極大的考驗,進而讓人做出不適當的行為。

週圍多多少少會有前輩分享這類經驗,自己也經歷過深知其恐怖之處,心態一崩就很難救了,請要入市一定要記得怕死才活得久,小小開始玩就好, 這也有可能就是最適合你的。

當初阿批到國外上課,接觸到CFD、Forex交易,這些曾是我自己在投資路上最排斥的,沒想到卻一直存活著,賺不多但還能夠持盈保泰,

早年只接觸了價值投資,以為價值投資就是王道了, 其它都是邪門歪道,結果自己在價投上跌得很重。

因此,學投資,可以系統性的都去接觸看看,記得怕死一點,小小資金開始練習即可,可能因此就找到最適合自己那個,而且不用像阿批學投資時,賠得痛得要死才買到教訓。

最後,學投資的第一步絕對是投資自己!

選定一個商品一個方法,把相關的書買來、相關的課找出來仔細啃,網路論壇中找用類似手法的高手去請教,再花點時間做模擬練習,之後再慢慢開始小本投入,相信心裡會對市場比較有概念,特別在市場裡遇到逆風時,心理上比較安定。

以上就是阿批的經驗分享,祝大家投資順利喔!

30 10 月, 2022 0 comment
0 FacebookTwitterPinterestEmail
投資

如何建立一個戰勝大盤的動能投資組合?

by yyp20 9 5 月, 2021

在<<賺贏大盤的動能投資法>>裡, 身為避險基金經理人的作者Andreas F. Clenow示範了如何製作一個用個股組成的動能投資組合:

  1. 要有一個選股池, 作者用S&P 500–>這裡阿批會用MTUM這支Smart-beta ETF.
  2. 有一個篩選準則, 作者用近90天漲最多的前30名.–>由於MTUM已經是近12個月及近6個月漲最多的個股挑出來, 並經過波動處理, 給予動能分數並加權的結果, 所以我們就直接挑每月前10支就好了.
  3. 決定要買多少: 作者用ATR去調整權數, 這裡阿批就直接每支給他10%.
  4. 再平衡: 作者是每月再平衡, 阿批也是, 每個月第一個交易日, 依照前月底公告的持股前十名調整持股.
  5. 閃避系統性風險的某種機制: 書中是用200日均線, 破線就只出不進; 在這裡阿批用冠軍策略(Accelerating momentum, ADM)的絕對動能, 以MTUM為單一絕對動能, 達到條件時十支個股直接出場, 改持有出場資產, 可以是現金, 也可以是與股市負相關的資產, 像是美國國債, 這回我們用TMF(3倍作多的20年國債), 讓組合在股市有系統性風險時也可以賺一筆.
  6. 個股賣出機制: 作者有用100日均線做個股的賣出機制, 這裡阿批不用.

作者有避險資金的資料源、程式能力, 可以找到得到S&P500過去20年, 每90天漲最多的個股, 還計入分割、配息、下市等資訊….

阿批只有Excel、Portfolio visualizer和網路上的公開資料, 也能行.

延伸閱讀: [賺贏大盤的動能投資法] 讀書心得及實驗

關於什麼是冠軍策略(Accelerating dual momentum, ADM), 可以讀下面這篇:

延伸閱讀: [雙動能投資]-讀書心得及摘要

為什麼用TMF可以讀這篇:

延伸閱讀: [諾貝爾獎得主的獲利公式LIFE CYCLE INVESTING]讀書心得+一個低風險(?)的槓桿投資組合

1

具體作法:

1. 先找到MTUM過往每月的持股前10名資料: 到Black Rock網站, 有MTUM每月的持股資料, 全部都給他抓下來.

https://reurl.cc/pmlW1Q

iShares MSCI USA Momentum Factor ETF 
prospectus Fact Sheet Download 
Overview 
Top Holdings 
May 6, 2021 
6 202'_ 
performance 
All Holdings 
CORP 
0M INC 
LDINGS INC 
INC CLASS C 
Key Facts 
Characteristi 
Asset Class 
Equity 
Eq u ity 
Equity 
Eq u ity 
Equity 
Eq u ity 
Equity 
Eq u ity 
Eq u ity 
Eq u ity 
Holdings 
Custom Columns 
Weight Notional Value 
AAP 
pyp 
GO 
apr 30, 2021 
Mar 31, 2021 
Feb 26.2021 
Jan 29. 
2021 
Dec 31, 2020 
Nov 30.2020 
Oct 30.2020 
sep 30. 
2020 
Aug 31. 
2020 
Jul 31, 2020 
Jun 30.2020 
May 29, 2020 
Apr 30.2020 
Mar 31. 2020 
Feb 28, 2020 
Jan 31.2020 
Dec 31. 2019 
Nov 29.2019 
Oct 31. 
2019 
GOOGL 
AOBE 
1 to IOOf 128 
ALPHABET INC CLASS A 
ADOBE INC 
THERMO FISHER SCIENTIFIC INC 
607 
5.27 
4.89 
4.81 
4.74 
4.10 
3.04 
2.98 
2_84 
2.77 
362.793099.52 
748.645.838.33 
695.557.806.58 
684.336.540.24 
673.68280661 
582.415.951.82 
432.307.897.6S 
423.887.771.90 
403.402.314.28 
393.372.719.96 
4 
. 13 
L iteratu re 
Filter list by 
Sector 
Consu mer Discretionary 
Information Technology 
Information Technology 
Information Technology 
Consu mer Discretionary 
Information Technology 
Communication 
Communication 
Information Technology 
Health Care 
a 
Show All 
Download Holdings O 
Holdings are subject to Change
2021/5/7 09:01 
2021/5/7 09:01 
2021/5/7 FF- 09:02 
2021/5/7 09:02 
2021/5/7 FF- 09:02 
2021/5/7 09:03 
2021/5/7 09:03 
2021/5/7 FF- 09:03 
2021/5/7 09:04 
2021/5/7 FF- 09:04 
2021/5/7 09:04 
2021/5/7 09:05 
2021/5/7 FF- 09:05 
2021/5/7 09:05 
2021/5/7 FF- 0906 
2021/5/7 09:06 
2021/5/7 09:07 
2021/5/7 FF- 09:07 
2021/5/7 09:07 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
Microsoft Excel 
22 KB 
22 KB 
22 KB 
21 KB 
21 KB 
21 KB 
21 KB 
21 KB 
21 KB 
21 KB 
21 KB 
21 KB 
21 KB 
21 KB 
21 KB 
21 KB 
21 KB 
21 KB 
21 KB

1

2. 打開下載的檔案, 找出每月的前十大持股, 如下2021/3/31的持股前十名是TSLA, MSFT, NVDA, AMZN, AAPL, PYPL, GOOG, GOOGL, ADBE, TMO.

但GOOG和GOOGL其實都是Google, 只是一個有投票權, 一個沒有, 兩個都選會變成Google在組合中的權重比其它股多一倍, 所以剔掉其中任一個, 由第11名的DHR遞補.

iShares MSCI USA Momentum Factor ETF 
Fund Holdings as of 
Inception Date 
Shares Outstanding 
Bond 
cash 
Issuer Ticker 
TSLA 
MSFT 
AAPL 
AMZN 
NVDA 
PYPL 
ADBE 
TMO 
GOOG 
GOOGL 
DKR 
CRM 
31-Mar-21 
16-Apr-13 
Name 
TESLA INC 
Asset Clas Weight (7 Price 
Equity 
MICROSOFT CEquity 
APPLE INC Equity 
AMAZON COL Equity 
NVIDIA CORP Equity 
PAYPAL HOLIEquity 
ADOBE INC Equity 
THERMO FISH Equity 
ALPHABET IN' Equity 
ALPHABET Equity 
[F]NAHER CO Equity 
SALESFORCE.(Equity 
6.33 
5.15 
4.77 
4.59 
4.58 
4.09 
2.69 
2.78 
2.74 
2.72 
2.39 
2.17 
667.93 
235." # 
122.15 # 
3,094.08 
533.93 # 
24284 # 
475.3? 
456.33 # 
2,068.63 
2,062.52 # 
211.67

1

3.打開Portfolio visualizer–>Backtest Portfolio

PORTFOLIO VISUALIZER 
PORTFOLIO VISUALIZER 
Portfolio Visualizer is an online software platform for portfolio and investment analytics to help you make informed 
decisions when comparing and analyzing portfolios and investment products. Our suite of quantitative tools covers 
portfolio modeling and backtesting, Monte Carlo simulations, portfolio optimization, factor models, and tactical asset 
allocation models. 
VIEW EXAMPLES • 
Backtest Portfolio 
Backtest a portfolio asset allocation and compare historical aru± realized returns and risk 
characteristics against various portfolios 
Backtest Asset Allocation 
Backtest s 
Backtest Dynamic Allocation 
Factor 
Run regression analysis using Fanta-Fren 
assets or a portfolio to analyze returns agi 
Factor Regression 
Risk Factor Amocation 
Match Factor Exposures 
principal Component 
Factor Statistics 
Fund Factor Regressions 
Fund Performance Attribution

1

4. 把前十名的個股放進去, 把Portfolio#1旁選單點開來, 選Equal weight, 持股比例就會自動平均分配, 然後按Analyze portfolios即可.

iShares MSCI USA Momentum Factor ETF 
Fund Holt 
31-Mar-21 
16-Apr-13 
Inception 
Shares ou 66300,coo.oo 
PORTFOLIO VISUALIZER 
Reinvest Dividends O 
Shares Market Vi Notio 
Q 
Q 
Q 
Q 
Q 
Q 
Q 
Q 
Q 
Q 
Analvzc Portfolios 
Examples 
Portfolio 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
Cancel 
FAQ 
Stock 
Bond 
Other 
Isuer Tick Name 
Display 
Factor Regression O 
Benchmark O 
P ortfolio Names O 
Portfolio Assets 
Asset I 
Asset 2 
Asset 5 
Asset 8 
Asset 10 (,evdd More) 
Total 
None 
Contact 
Portfolio 
Asset Clas Weight (Z Price 
TSLA 
MSFT 
AAPL 
AMZN 
NVDA 
PYPL 
ADBE 
TMO 
GOOG 
GOOGL 
DHR 
CRM 
NFLX 
NKE 
QCOM 
UPS 
LOW 
TESLA INC Equity 
MICROSOFT (Equity 
APPLE [NC Equity 
AMAZON CO. Equity 
NVIDIA CORI Equity 
PAYPAL HOL Equity 
ADOBE Equity 
THERMO Equity 
ALPHABET 
ALPHABET Equity 
DANAHER C(Eauity 
SALESFORCE Equity 
NETFLIX INC Equity 
NIKE INC Cl.' Equity 
QUALCOMM Equity 
UNITED 
LOWES COM] Equity 
6.33 
5.15 
4.77 
4.09 
2.74 
2.39 
2.17 
1.81 
1.76 
1.72 
67.93 
122.15 
242.84 
225.08 
190.18 
MSFT 
GOOG 
DHR

1

5.一秒鐘後結果出來, 選擇Monthly Returns.

Summary Exposures 
Portfolio Allocations 
Name 
Tesla Inc 
Metrics 
Annual Retums 
Monthly Returns 
Drawdowns 
Allocati•n 
1000% 
1000% 
10.00% 
1000% 
10.00% 
1000% 
1000% 
1000% 
1000% 
10.00% 
Drawdown 
-1685% O 
ets 
Roling Retums 
MSFT 
AOBE 
TMO 
DHR 
Microsoft Corporation 
Amazon.com. Inc. 
N A Corporatio n 
PayPal Holdings, Inc. 
Adobe Systems Incorporated 
Thermo Fisher Scientific Inc 
Alphabet Inc 
Danaher Corporation 
Save portfolio 
portfolio Returns 
T SLA 
Sharpe 
US Mkt 
Correlation 
Portfolio 
Portfolio 1 
Initial 
SIO,ooo 
Balance 
91.67 0 
CAGR 
48.19% 
Stdev 
2347% 
Year 
135.50% 
Year 
922%

1

6.把2021年4月的結果Copy到Excel工作表上

啊不是用2021/3/31的持股, 怎麼會是取4月的結果?

因為這個策略是每月1日依上月底公佈的持股前10名來決定下月的持股, 因此是取4月

就這樣不斷重複, 把2013~2021的結果都填上去, 可以視自己的需求加上備註, 像阿批有註記某些持股已經不在了的註記和每個月的持股明細, 還有補上S&P 500、MTUM、MTUM-TMF冠軍策略組合的報酬, 來看看是不是真的有比較好.

PORTFOLİO VİSUALIZER 
Amazon.com, Corporation 
Exampıes 
FAQ 
Corporation 
(MSFT) 
151% 
O.8S% 
595 % 
417% 
795% 
-4ş7% 
-265% 
1363% 
1106% 
1028% 
_674% 
-374% 
601% 
390% 
429% 
0.41% 
116% 
696% 
Tools 
Adobe 
Ş y ş tems 
Incorporated 
IADBE) 
143% 
480% 
-290% 
061% 
1137% 
655% 
34796 
-171% 
.779% 
11M2% 
932% 
1260% 
207% 
1555% 
702% 
452% 
0.20% 
312% 
694% 
stock_20210507 
Month 
10 
11 
a 
Portfolio 
I Return 
123% 
5.60% 
5.76% 
664% 
9.83% 
219% 
12.19% 
1435% 
_610% 
_413% 
16.19% 
986% 
2.72% 
0.00% 
Balance 
$26,405 
526,047 
526,367 
$27,843 
529,448 
$31,105 
534,491 
533,325 
530,763 
537,399 
$d0,577 
545,525 
564,844 
560,436 
$57,942 
567,322 
$73,959 
575,971 
$74450 
$71,451 
581 ,467 
Inc 
(J SLA) 
.662% 
6.76% 
3074% 
477% 
2679% 
5552% 
2.68% 
.2156% 
4921% 
679% 
2932% 
7415% 
-1391% 
-955% 
4627% 
1245% 
-1427% 
621% 
Apple 
Inc. 
(AAPL) 
.V64% 
ıvop,'. 
775% 
988% 
540% 
-1147% 
.698% 
1554% 
350% 
1474% 
216696 
-1025% 
-600% 
11 
.OEE% 
-797% 
073% 
762% 
DİA 
(NVDA) 
.062% 
3.92% 
1518% 
790% 
356% 
048% 
1430% 
-210% 
1088% 
2117% 
706% 
2600% 
1.20% 
-736% 
592% 
-256% 
.050% 
-26496 
1245% 
Paypaı 
Holdings, 
Inc. 
(PYPL) 
.122% 
-501% 
019% 
376% 
115% 
529% 
-1134% 
2847% 
2602% 
1240% 
4.12% 
-348% 
-553% 
1504% 
938% 
10596 
-655% 
301% 
Thermo 
Fishet 
n tifİc 
(TMO) 
-515% 
3.51% 
.3.60% 
18.01% 
3_83% 
1424% 
2.98% 
-172% 
022% 
-11 
3.03% 
bet 
Inc. 
(GOOG) 
.235% 
260% 
3.37% 
3.56% 
216% 
7.27% 
.1318% 
1598% 
5.95% 
.107% 
10.20% 
-1107% 
10.30% 
8.62% 
-050% 
4.79% 
1096% 
16.51% 
Cory 
Inc. (AMZN) 
-112% 
485% 
-227% 
235% 
v36% 
261% 
371% 
_622% 
350% 
2689% 
-128% 
1296% 
1471% 
905% 
-376% 
-358% 
4.34% 
281% 
.156% 
0049'. 
1107% 
B 
c 
E 
2019 
2019 
2019 
2019 
2019 
2019 
2020 
2020 
2020 
2020 
2020 
2020 
2020 
2020 
2020 
2020 
2020 
2020 
2021 
2021 
2021 
Year 
MTUMIO 500 
Month 
Rama rk 
Return Return 
Goog duplicated 
, üşe DHR 
p 
Holdings 
TSLA 
Q 
MSFT 
AAPL 
AMZI

1

7.當把每個月前十檔的績效的報酬填入Excel工作表後, 就可以得到”每個月持有MTUM前十名持股”的長期報酬, 其實就已經不錯了, 是同期S&P 500的二倍.

說填這個麻煩嘛? 也還好, 就幾個小時的工罷了….比起在市場裡的金錢損失, 這沒什麼, 再說長期報酬率真能提升個幾個百分點, 那數字也是滿可觀.

2014 
2015 
2016 
2017 
2018 
2019 
2020 
MDD 
MTUMIO% 
14.73% 
16.51% 
8.67% 
43.06% 
3.09% 
22.63% 
79.85% 
24.84% 
-16.12% 
sap 500 % 
13.49% 
1.26% 
11.81% 
21.65% 
-4.53% 
31.34% 
18.27% 
12.76%
MTtJM10 SAP 500 
DM MTuM_TMF 
ishares MTIJMIO_TMF 
PFE 
2013 
2013 
2013 
2013 
2013 
2013 
2014 
2014 
2014 
2014 
2014 
2014 
2014 
2014 
_OMY% 
449% 
622% 
308% 
-242% 
4 SC% 
-400% 
_023% 
443% 
CSS% 
106% 
620% 
293% 
_202% 
2.33% 
312% 
2.51 % 
082% 
072% 
233% 
_lßl% 
_0.26% 
CELG not available, 
use lith Biib 
CELG not available 
, use lith WMT 
CELG not available, use Ilth Biib 
CELG not available, use Ilth HD 
use Ilth HD 
CELG not 
CELG not available, use lith saUX 
-2.32% CELG not available, 
use Ilth MA 
6.72% CELG not available, use Ilth MA 
-3.42% CELG ,PCLNnot available, use Ilth MA,MCK 
-0.99% CELG ,PCLNnot available, use Ilth MA, MCK 
CELG ,PCLN, GGQ7not available, use 13th MA 
2.07% CELG not available, use lith MA 
-1.04% AGN not available, use HPQ 
4.60% AGN not available, use MMM 
AGN not 
use MMM, LMT 
AGN not available, use MMM, LMT 
AGN not available 
, use LMT 
-0.81% 
5.43% 
-1.05% 
.1.04% 
ACT, KRET not available, use LOW,MO 
3.79% AGN, KRET not available, use LOW,W3A 
-6.00% AGN, KHcnot avaiÄble, use LOW,WBA 
S.10% AGN, KHCnot available, use MO 
-1.73% AGNnot available, use UNH 
AGNnot available, use AG 
-0-13% Goog duplicated, use LINH 
-3.81% Goog duplicated, 
use UNH 
8.71% Goog duplicated, 
use UNH 
-064% Goon dunljcatprt 
Performance I @ 
PFE 
GILD 
GILD 
GILD 
GILD 
GOOGL JNJ 
GOOGL JNJ 
GOOGL FB• 
GOOGL 
GOOGL FB 
vz 
GILD 
GILD 
GILD 
JNJ 
GILD 
GILD 
JNJ 
MRK 
WF-c 
WFC 
Corpo rati 
on 
INTC 
MSFT 
GILD 
JNJ 
GILD 
DIS 
AAPL 
cvs 
AAPL 
V 
A"7N 
HD 
WMT 
GILD 
JNJ 
GILD 
BA 
MRK 
JNJ 
JNJ 
MRK 
JNJ 
INTC 
JNJ 
GILD 
INTC 
cvs 
cvs 
MPL 
cvs 
LLY 
SBIJX 
SBUX 
MRK 
MRK 
BA 
BA 
GILD 
PFE 
PFE 
AMZN 
AMZN 
AMZN 
AMZN 
BMY 
AMZN 
BRKB 
BRKB 
BRKB 
BRKB 
BRKB 
BMY 
BMY 
BMY 
AMZN 
DIS 
DIS 
DIS 
CELG 
DIS 
CELG 
CELG 
CELG 
CELG 
BRKB 
-2.32% 
6.72% 
-3.42% 
-0.99% 
4.07% 
2.07% 
.1.04% 
-0.67% 
-0.81% 
-0-69% 
5.43% 
-1.05% 
.1.04% 
3.36% 
-0-34% 
3.79% 
7.32% 
-3.81% 
.1.28% 
1% 
JNJ 
JNJ 
, (FBI 
Apple 
(AAPL) 
AAPL 
A.APL 
AAPL 
AAPL 
AAPL 
AMZN 
DIS 
AMZN 
AMZN 
AMZN 
GOOGL BRKB 
AMGN 
AMGN 
CELG 
CELG 
CELG 
HD 
DIS 
Bild 
CELG 
Bild 
MM M 
BRKB 
MMM 
BRKB 
MMM 
BRKB 
BRKB 
MMM 
CELG 
GGQ7 
MMM 
AMZN 
CELG 
AGN 
MMM 
cvs 
AGN 
cvs 
AGN 
cvs 
AGN 
d Muti" 
Corpmti (MMM) 
Hathaway 
BRKB 
cvs 
cvs 
BRKB 
UNP 
cvs 
cvs 
BRKB 
cvs 
BRKB 
MDT 
KRFT 
KRET 
MDT 
MDT 
KHC 
MDT 
LOW 
GOOGL AGN 
Bild 
SBUX 
MA 
MA 
PCLN 
PCLN 
CELG 
MA 
LMT 
LMT 
LMT 
LMT 
LOW 
LOW 
LOW 
KHC 
UNH 
AIG 
MA 
MCK 
PCLN 
AGN 
MMM 
MMM 
MMM 
WBA 
MO 
UNH 
UNH 
AGN 
MCK 
MA 
MA 
HPQ 
HPQ 
HPQ 
HPQ 
MDLZ 
MCK 
SBUX 
GOOGL BRKB 
-271% 
_002% 
-173% 
_064% 
WFC 
WFC 
MRK 
JNJ 
Corporati 
on 
MSFT 
GILD 
MSFT 
MSFT 
MSFT 
AAPL 
AMZN 
DIS 
DIS 
AMZN 
AMZN 
8RKB 
BRKB 
GILD 
GILD 
Inc 
AMGN 
JNJ 
INTC 
AMGN 
JNJ 
UNH 
UNH 
UNH 
UNH 
SBUX 
SBUX 
S8UX 
GILD 
GILD 
BRKB 
BRKB 
Hattmy 
(AWG') 
GILD 
AMGN 
AMGN 
INTC 
AMGN 
HD 
NKE 
MO 
MO 
MO 
BMY 
UNP 
AGN 
AGN 
AGN 
UNP 
DIS 
ACT 
SBUX 
SBIJX 
AGN 
NKE 
LLY 
NKE 
MCD 
MCD 
rur.n 
MMM 
cvs 
UNP 
UNP 
UNP 
Hntth 
Co 
PE i Tic 
Corpo rati 
UNP 
DIS 
DIS 
SBUX 
AGN 
AGN 
SBUX 
MDLZ 
GOOGL AGN MDLZ 
MCD 
NKE 
NKE 
NKF 
GOOGL GOOG AGN 
GOOG GOOGLAGN 
GOOG GOOGL UNH 
r:nnGl anna I INH 
2 PV MTUM TMF

1

8. 而阿批要的是在大盤有系統性風險時會有MTUM當作單一絕對動能開關, 去將整個投資組合轉換成TMF, 因此我們要需要:

(1)MTUM-TMF的冠軍策略(ADM)組合的轉換Timing, 這可由Portfolio visulizer–>Timing models–>Dual Memntum去創建MTUM-TMF的組合, 然後取得Timing時間.

Model Simulation Results (Jan 2014 - Apr 2021) 
Summary Metrics 
Signal Date 
05/07/2021 
Stan 
u 
May 2021 
13 
May 2020 
12 
Mar 2020 
11 
Apr 2019 
10 
Mar 2019 
g Feb 2019 
8 Nov2018 
7 Feb 2017 
6 oec2016 
5 Apr2016 
4 Feb 2016 
3 Nov201S 
2 sep2015 
Jan 2014 
Annual Returns Monthly Returns Drawdowns Rolling Retums Timig Periods 
100.00% Shares MSCI USA Momentum Factor ETF (MTUM) 
Asset 
MTUM 
MTUM: 4581% 
TMF: 1481% 
MTUM: 9.02% 
TMF: 17 
MTUM: 3.39% 
TMF: 24 06% 
MTUM_ 39 
TMF: 0.49% 
MTUM• 3 
TMF: 8.01% 
MTLIM: -342% 
TMF: 3.23% 
MTUM: 18.10% 
I -month 
-0.32% 
0.00% 
-3.04% 
0.01% 
o nth 
1170% 
0.03% 
Dual Momentum Model 
4581% 
1491% 
902% 
1700% 
339% 
2406% 
3975% 
0.49% 
386% 
8.01% 
-342% 
328% 
18.10% 
Weighted 
287% 
0112% 
287% 
002% 
May 2021 
Apr 2021 
2020 
Feb 2020 
Mar 2019 
Feb 2019 
Jan 2019 
oct2018 
Jan 2017 
Nov 2016 
Mar 2016 
Jan 2016 
oct2015 
Aug 201S 
Assets 
Months 
10000% Shares MSCI USA Momentum Factor ETF (MTUM) 
12 
10000% Shares MSCI USA Momentum Factor ETF (MTL.'M) 
2 100.00% Direxion (IMF) 
11 
10000% •shares MSCI USA Momentum Factor ETF (MTUM) 
100.00% Direxion Daily 20. ETF (TMF) 
10010% Shares MSCI USA Momentum Factor ETF (MTLJM) 
3 10000% Direxion Daily 204 YrTrsyBu11 3X ETF (TMF) 
21 
10010% Shares MSCI LISA Momentum Factor ETF (MTUM) 
2 10000% Direxion Daibi 204 YrTrsyBu11 ETF (TMS) 
8 100.00% Momentum Factor ETF (MTUM) 
2 10000% Direxion Daily ETF (TMS) 
3 10000% iShares MSCI USA Momentum Factor ETF (MTUM) 
2 10000% Direxion Daily (TMF) 
10000% Shares MSCI LISA Momentum Factor ETF (MTUM) 
20 
Equal Weight Portfolio 
4581% 
-1M9% 
902% 
2.12% 
3975% 
386% 
1810%

1

(2) 同期間TMF的報酬率, 這也可以從MTUM-TMF的回測資料中得到, 可以直接Copy或Download Excel檔.

Model Simulation Results (Jan 2014 - Apr 2021) 
Summary Metrics Annual Returns Monthly Returns Drawdowns Rolling Returns Timing Periods
2014 
2014 
2014 
2이4 
2014 
2014 
2014 
2014 
2014 
2014 
2014 
2014 
2015 
2이5 
2015 
2015 
2이5 
2015 
2015 
2015 
2015 
2이5 
2015 
2015 
2016 
2016 
2016 
2016 
이|4| Momentum M예el 
Retum 
-232% 
672% 
-312% 
•0뜨9% 
44786 
207% 
•1℃4% 
440% 
•0죠7% 
230%. 
375% 
•021% 
-169% 
•1 05% 
-104% 
136% 
-134% 
5.10% 
•173% 
•321% 
8.71% 
•0죠4% 
•063'石 
Balance 
510,425 
510.068 
510.374 
510,588 
510,478 
510.960 
510,887 
511.137 
5111555 
511,461 
511.382 
512,000 
511.875 
511.751 
512,147 
512.105 
512,564 
511.810 
$14413 
512,197 
512.262 
512,246 
511,780 
SI기805 
512,723 
512.643 
Equal Weight P에tf혜0 
Retum 
-232% 
672읽, 
-342% 
•0S9% 
4.07% 
•1t4% 
440% 
•0죠7% 
230%. 
375% 
•181% 
-069% 
•145% 
-1 04% 
136% 
-034% 
379% 
•F00% 
-1 89% 
732% 
0.53% 
-113% 
-1 28% 
531% 
•163% 
Balance 
59,768 
510.425 
510.068 
510.374 
510 588 
510.478 
510 960 
510.887 
511,137 
511,555 
511,461 
511.382 
512,000 
511.875 
511.751 
512.147 
SI기105 
512 564 
511.810 
511.587 
512.435 
SI기501 
512,485 
512.009 
511.856 
512 485 
512.407 
iShares MSCI USA Momentum Factor ETV (MTUM) 
672% 
-342% 
•까99% 
447% 
•1t4% 
460% 
•167% 
230% 
375% 
요81% 
-069% 
543% 
-1 04% 
336% 
-034% 
379% 
•F00% 
0.53% 
-113% 
321% 
-128% 
531% 
•0 63% 
Direxion Dai* 20• Yr Trsy Bull 3X ETV (TMF) 
163% 
176% 
596% 
879% 
151% 
1442% 
•6뚀5% 
846% 
908% 
938% 
31.01% 
•17晷7% 
257% 
-1030% 
•7S1% 
-1249% 
1340% 
275% 
5.10% 
-271% 
1774% 
8.71% 
•0-64% 
-239%

1

9. 在原先填寫報酬的Excel工作表, 貼上TMF的報酬率, 並加上絕對動能的欄位, 就可以得到每月MTUM前10名的持股, 用MTUM當絕對動能去切換成TMF這個組合的報酬率.

K30 
A 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
B 
c 
MTUMIO 
ishares MW USA 
Factor ETF 
.1.89% 
7.32% 
-0.13% 
-3.81% 
.1.28% 
s.31% 
-0.63% 
2.95% 
Bun Erg 
13.40% 
.2.75% 
5.10% 
-I. 73% 
-2.71% 
-2.41% 
17.74% 
8.71% TMF 
-0.64% TMF 
-2.39% 
MTUMIO_TW 
retur n 
st0% 
-064%

1

10. 接下來是要算每年的報酬率, 但不是用每個月的報酬率去直接加喔!

這裡應該是幾何平均報酬, 懶得帶公式的玩法就是先把報酬率換成每月的帳戶餘額.

LIO 
Year 
10 
11 
12 
13 
14 
15 
16 
B 
Month 
c 
.242% 
400% 
-023% 
0.58% 
momentu 
GIOCOJX(I+KIO) 
MTUMIO TMF MTUMIO IMF 
2014 
2014 
2014 
20 u 
2014 
20M 
2014 
-0.23% 
443% 
9,758 
10,197 
9,789 
9767 
10,199 
10.255 
10,364 
Remark 
CELG n 
CELG n 
CELG 
CELG 
CELG 
CELG n 
AGN nc
Lil 
Year 
10 
11 
12 
13 
14 
15 
16 
17 
B 
Month 
c 
MTUMIO 
J 
2014 
2014 
2014 
2014 
20 u 
2014 
2014 
momentu 
400% 
-023% 
620% 
MTUMIO TMF MTUMIO TMF 
.242% 
-023% 
820% 
g. Iss 
9,789 
9.767 
10.199 
10.2" 
10.364 
11.007 
Remark 
CELG not 
CELG not 
CELG ,PCLN 
CELG ,PCLN 
CELG ,PCLN 
CELG not 
AGN not 
AGN not avi

1

11. 再用樞紐分析表去抓每年12月底的帳戶餘額.

Month 
2013 
2014 
2015 
2016 
2017 
2018 
2019 
2020 
12 
ЖЕ - ОМ МТИМ10 TMF balance 
11,473 
12,632 
13,800 
19,575 
26,385 
35,345 
69,381

1

12. 比較和前期的差額比率就是年報酬率了.

сз 
2 
з 
4 
5 
7 
8 
2014 
2015 
2016 
2017 
2018 
2019 
2020 
в 
мтикпо 
balance 
11,473 
13,368 
14,527 
20,781 
21,423 
26,272 
47,252 
с 
мтим10% 
14.73% 
16.51% 
8.67% 
43.06% 
3.09% 
22.63% 
79.85% 
13.49% 
1.26% 
11.81% 
21.65% 
453% 
31,3496

1

13. 也可以依自己的需要加上需要的數字, 像阿批會看年複利成長率CAGR, 就公式帶一下囉….

最大回撤(MDD)是阿批很在意的, 通常我會從月報表上每個去細看找出來.

其它的比率像是Sharp ratio, Sortino ratio, 要去找每年的無風險利率, 比較麻煩, 有時就大概看一下標準差和CARG的比較, 心裡有底就好了.

2 
2014 
з 
2015 
4 
2016 
5 
2017 
2018 
7 
2019 
8 
2020 
9 
10 
CAGR 
11 MDD 
в 
мтимш 
Ьа[.псе 
11.473 
13,368 
14,527 
20,781 
21,423 
26,272 
47,252 
с 
катим 
14.73% 
16.51% 
8.67% 
43.06% 
22.63% 
79.85% 
24.84% 
-16.12% 
500 % 
13.49% 
1.2696 
11.81% 
21.65% 
4.53 % 
31.34% 
18.27% 
12.76% 
-19.63%

1

14. 最後的結果長這樣, 每月從MTUM挑前10名, 以MTUM為絕對動能, 切換TMF的組合, CAGR是31.88%, 同期S&P 500的報酬率是12.76%, 回撤也比較大.

與直接持有MTUM、直接持有每月前十名及使用MTUM-TMF冠軍策略(ADM)組合的比較, 也是較佳.

這樣算是親自驗證了<<賺贏大盤的動能投資法>>的投資方式了, 的確有效.

不過, 這樣的回測期間也還是算比較短的, 也不能忽略實務上每月再平衡是會因為買不滿整股或是損益金額太小無法再平衡的, 再加上進倉的滑價, 多少會有一點誤差啦,

再來, 持股10支, 要承受的個股風險也需要考量, 不過仍然是一個不錯的組合.

мтикпоммтим) 
мтим_тм; % 
2015 
2016 
2017 
2018 
2019 
2020 
моо 
мтим10% 
14.73% 
16.51% 
8.67% 
43.06% 
3.09% 
22.63% 
79.85% 
24.84% 
46.12% 
мтим% 
14.61% 
8.93% 
37.50% 
27.25% 
29.85% 
16.59% 
-17.90% 
14.73% 
10.1096 
9.25% 
41М% 
34.79% 
33.96% 
963096 
31.88% 
-13.66% 
14.61% 
6.84% 
6.84% 
35.29% 
29.52% 
37.52% 
51.01% 
и.97% 
1.26% 
11.81% 
21.65% 
.4.53% 
31.34% 
18.27% 
12.76% 
49.63%

1

以上僅是個人的研究思考, 不是投資建議, 想要進場仍需自行做好功課.

9 5 月, 2021 0 comment
3 FacebookTwitterPinterestEmail
閱讀筆記

[雙動能投資]-讀書心得及摘要

by yyp20 19 3 月, 2021

雙動能係蝦米?

<雙動能投資>讓你用持有指數一半不到的風險, 獲得超越指數的績效.

在被動投資風行的年代, 這本書提供另一個更簡單、更有效率的投資方法.

1

“雙動能”這個名詞, 聽起來很玄, 講相對動能、絕對動能, 聽起來又更玄.

用比較白話的說法,

 “相對動能“就是大家耳熟能詳的”汰弱留強“, 買一籃子市場上表現強勢股票, 每隔一段時間, 把表現不好的砍掉, 補上新的強勢股.

“絕對動能“就是如果大盤不好的時候, 高檔出清持股, 退出看戲, 等到大盤又重新好起來了, 再開始買進.

“雙動能投資”, 講白了就是股市裡大家都熟能詳的”買進強勢股, 汰弱留強, 高檔出清.“

在股市中,這絕對是常識中的常識.

作者Gary Antonacci用嚴謹的學術驗證來做這件事, 他從各家投資法的歷史沿革、各種投資工具的歷史現開始介紹, 詳細的解釋了動能的歷史, 最早的論文可以早到1801年, 沒有哪家比這更早的了,

阿批聽過的投資大家Jesse Livermor, William O’neil, Richard Dennis..甚至著名的經濟學大家凱因斯都靠動能在投資.

經過一連串的論證、回測, 引用了大量學術研究, 跑出了作者經典的雙動能模型, GEM(Global equity momentum)

GEM系統架構是這樣的:

總共持有3支ETF, 依照12個月平均報酬率來決定要不要轉換標的.

  1. S&P500,

2. ACWI ex-US(MSCI All Country Would Index, 所有國家世界指數不含美國, 有點像VEU),

3. 美國總體債券(有點像BND)

扌 $-fiACWl ex-US 
YES 
ACWI ex-US 
表 現 比 
國 期 國 
券 好 ? 
NO 
持 有 美 國 總 體 債 券 
NO 
NO 
每 個 月 由 此 開 始 
S & P58 表 
現 比 A 
ex-US€f? 
YES 
S & P58 表 
現 比 美 國 
短 期 國 
券 好 ? 
YES 
持 有 5 & P 500

1

作者在官網的一份GEM的追蹤資料, 從1950~2018年的表現, 可以說是輾壓單純的持有指數.

1950 ~ 2018 
年 複 利 成 長 率 ( % ) 
年 化 標 準 ( % ) 
夏 普 比 率 
| 最 大 回 【 % ) 
最 6 個 月 報 酬 ( % ) 
差 12 個 月 報 酬 ( % ) 
獲 利 月 份 比 例 ( % ) 
GEM 
15.8 
11.5 
0 96 
· 118 
-157 
一 17 8 
69 
100 % i%S&P 500 
114 
14.2 
0 2 
-51 
-41.8 
一 433 
64
Extended Backtest of Global Equities Momentum

在Portfolio visualizer裡有原版範例, 可以自己玩看看

應用同樣的架構, 亦可以平常70% GEM+30% 債,  市場下行就全部轉成債…., 或者用類股輪動的方式當作相對動能,

基本上是雙動能的大框架下就隨你搭了, 作者也有提供這二個作法, 基本上也是波動相對小, 績效不錯的策略.

這個模型對阿批來說算是夢寐以求的, 因為阿批曾花了多年的時間, 試圖去自己建一個股市的交易模型, 但要處理的資料實在太多…..

想到台股1700支的個股, 每支10年的資料就好, 要去驗證大盤在某個狀況下,

比如創100日(或其它日數)新高的個股, 用60MA進出的表現……還要可以閃過08年的大跌…

用想的就很累, 何況當初阿批還手key在做, 不用說是零零落落, 中間還會有一大堆的問題要思考,

像是風控機制、倉位進出機制啥的….

系統選了100支, 沒錢買100支要怎樣? 只買幾支自然會有概率分散的問題(就是買的沒漲, 沒買的卻漲了), 搞死人的…

相比之下, Gary Antonacci的雙動能模型簡直簡單到靠…北邊走…..

3支ETF, 1個月看一次, 就可以有超越大盤的報酬, 風險才一半…當然人家是用在ETF上,

如果用在個股或者開槓桿自然威力不止於此, 前提是你的錢要夠多買那麼多支個股.

再來, 阿批也一直覺得傳統的風險平價(Risk Parity)模型, 像是股債60%/40%, All weathers….etc.

將不同的資產波動性互相平衡過, 固然減少了波動, 卻也犠牲了報酬,

為什麼不能股市漲的時候100%持股, 股市不漲的時候跳出來抱現金或抱債?

Gary Antonacci的雙動能提供了最佳公約數.

在原版的雙動能採用單一的回顧期間12個月, 也就是看過去12個月的平均報酬率來做基準切換資產.

理由是作者遍歷各家學術研究, 並回測後, 認為6個月和12個月是最佳的回顧期間.

網路上有改良版的雙動能模型, 使用多重的回顧期間(想不到了吧!), 

也就是阿批最愛的冠軍策略(加速雙動能,ADM, Accelerating dual momentum),

這在國外有人回測到一百多年, 上課的老師又測了一次, 可以說是很有效且有說服力的架構.

原版雙動能:

Momentum Assets(動能資產):

  • Vanguard 500 Index Fund (VFINX) S&P500指數–>ETF用VOO、IVV、SPY都可以.
  • Vanguard Total International Stock Index Fund (VGTSX) 總體國際股票–>ETF用VXUS, VEU

Fixed Income Asset(固定收入資產):

  • Vanguard Total Bond Market Index Fund (VBMFX) 全體債券市場–>ETF用BND

*注意用ETF的績效和原資產會有誤差.

PortfolioInitial BalanceFinal BalanceCAGRStdevBest YearWorst YearMax. DrawdownSharpe RatioSortino RatioMarket Correlation
Dual Momentum Model$10,000$88,0739.16%12.59%29.87%-18.93%-19.71% 0.620.920.73
Vanguard 500 Index Investor$10,000$61,6827.60%15.65%32.18%-37.02%-50.97% 0.430.620.99
原始雙動能績效(至1998/1~2022/10)
雙動能原始版

改良版雙動能(冠軍策略, ADM, Accelerated dual momentum)

不改變標的, 只把回顧期間改成多重, 績效就已是很明顯的不同, 值得注意的是標準差也變低了.

Momentum Assets(動能資產):

  • Vanguard 500 Index Fund (VFINX) S&P 500指數–>ETF用VOO、IVV、SPY都可以.
  • Vanguard Total International Stock Index Fund (VGTSX) 總體國際股票–>ETF用VXUS, VEU

Fixed Income Asset(固定收入資產):

  • Vanguard Total Bond Market Index Fund (VBMFX) 全體債券市場–>ETF用BND

*注意用ETF的績效和原資產會有誤差.

PortfolioInitial BalanceFinal BalanceCAGRStdevBest YearWorst YearMax. DrawdownSharpe RatioSortino RatioMarket Correlation
Dual Momentum Model$10,000$160,99011.80%11.80%48.99%-22.37%-23.61% 0.861.420.64
Vanguard 500 Index Investor$10,000$63,6487.71%15.63%32.18%-37.02%-50.97% 0.440.630.99
改良版雙動能回測試(1998/1~2022/10)
雙動能改良版回測

改良版雙動能_改標的(冠軍策略, ADM, Accelerated dual momentum):

再將標的做修正, 邏輯不變, 同樣的回測期間, 承受的風險只有指數的一半不到, 獲利是倍增, 累積的資金是8倍以上.

點此看原文版回測.

Momentum Assets(動能資產):

  • Vanguard 500 Index Investor (VFINX) S&P 500指數
  • Vanguard International Explorer Inv (VINEX) 美國以外小型股–>ETF可以用VEU或是SCZ

Fixed Income Asset(固定收入資產):

  • Vanguard Long-Term Treasury Inv (VUSTX) 美國長期債券–>ETF用TLT

*注意用ETF的績效和原資產會有誤差.

PortfolioInitial BalanceFinal BalanceCAGRStdevBest YearWorst YearMax. DrawdownSharpe RatioSortino RatioMarket Correlation
Dual Momentum Model$10,000$583,21017.73%14.78%77.49%-31.94%-33.37% 1.061.920.42
Vanguard 500 Index Investor$10,000$63,6487.71%15.63%32.18%-37.02%-50.97% 0.440.630.99
加速雙動能(1998/1~2022/10)
加速雙動能回測

這個模型有個硬傷, 就是遇到高通膨股債雙跌就必死, 尤其美國20年國債對於升息是最敏感的, 會殺很大,

延伸閱讀: [雙動能投資]如何應對高通膨?

建立自己的個股雙動能模型

Gary Antonacci本身覺得投個股的轉換成本太高, 不划算, 但肯定有的人會想用應用在個股, 用不同的參數,

像阿批, 一直想建自己的強勢股模型, 可以參考:

賺贏大盤的動能投資法

作者是避險基金經理人, 裡面有教如何從頭建立一支動能策略, 邏輯和雙動能極相似, 不過是用在個股, 選股池會是重點.

延伸閱讀: [賺贏大盤的動能投資法] 讀書心得及實驗

想要了解個股怎麼選出來, 可以參考:

美股研究室

延伸閱讀: [美股研究室]-讀書心得及摘要

這本<雙動能投資>及上面的書都是上冠軍策略(ADM)的老師推薦的閱讀書目之一,

課程的社團裡會有些眉眉角角可以挖寶、討論, 這些是網路上Google不到的.

如果想要比較完整的知識體系+同儕, 用冠軍策略(ADM)的框架自行建構策略, 建議課要上、書要唸、社團要加、功課要做,

善用社團裡的資源.(真的書要看完喔….不然犯錯了不知道…賠錢也只能自己吞..)

延伸閱讀: 真的假的? 1個年複利報酬60%的懶人美股及美股ETF投資組合!?

如果想要一套直接可執行且嚴謹的量化交易策略, 雙動能網路上有一堆人寫文章!

參數、標的和用法都有人在分享了.

像阿批本身追求的是長期的資產複利成長, 即使是用原版的雙動能, 必然也是會像被動投資那樣定期不斷投入,

這時必須要有足夠的知識背景, 足夠的研究, 建立足夠強的信心,

最重要的是了解自己的風險承受度, 也就是你在投資組合跌多少的時候開始會焦慮、想出場呢?

這樣才有可能在逆風的時候抱得住.

強力推薦的另一個理由

你看日本大盤這麼鳥的走勢(下圖紅線), 1997~2022年, 年複利成長才1.2%,

要是聽人說股市長期抱酬是7%~10%(這是美股的研究結果), 定期定額投資日經指數, 那這20年的歲月, 無語問倉天了…

就這樣的一個指數, 放到冠軍策略(ADM)裡都還能搞成年報10.25%, 拉回還少一半…有沒有拯救人生的感覺?

PortfolioInitial BalanceFinal BalanceCAGRStdevBest YearWorst YearMax. DrawdownSharpe RatioSortino RatioMarket Correlation
iShares MSCI Japan ETF$10,000$13,593 1.20% 18.01%60.88%-30.31%-57.84% 0.050.070.64
MSCI日本ETF(1997/1~2022/10)

1

來看看台股吧!!

下圖是用MSCI Taiwan指數為基準, 比台灣50的含”積”量有些不同, 不過大致可以看得出台灣這個市場的走勢.

2001~2022年10月, 年複利報酬率是6.06%, 最大拉回是2008年的-58.22%…..

放到冠軍策略(ADM)裡面, 報酬幾乎*2, 變成13.2%, 最大拉回只有一半不到的-20.12%…累積的資金是單純持有台股指數(橘線)的3倍..一樣20年的光陰, 投100萬, 變成400萬跟變成1200萬, 努力沒差多少, 只是選擇不一樣.

PortfolioInitial BalanceFinal BalanceCAGRStdevBest YearWorst YearMax. DrawdownSharpe RatioSortino RatioMarket Correlation
Dual Momentum Model$10,000$239,17615.59%13.47%66.06%-31.94%-33.37% 1.051.890.41
iShares MSCI Taiwan ETF$10,000$36,3286.06%24.02%73.75%-45.23%-58.22% 0.310.470.67

1

同段時期內的股債60%/40%配置績效如下…

年複利成長7.03%, 最大拉回-30.72%

阿批覺得這個績效的差距, 已經是絕對性的差距了..

同樣花20年, 資產一個變12倍, 一個變4倍, 風險還比較小, 應該不用想就選12倍又風險比較小的吧?

PortfolioInitial BalanceFinal BalanceCAGRStdevBest YearWorst YearMax. DrawdownSharpe RatioSortino RatioMarket Correlation
Portfolio 1$10,000$36,869 6.16% 9.43%21.83%-20.20%-30.72% 0.540.780.98

1

單一策略像投資單一市場, 要是不如預期怎麼辦? 那就做幾支策略弄成一個組合就好啦…分散是重要的.

或者, 像Gary Antonacci一樣, 找出當代很厲害的投資大家,

分散資金, 每個跟一些做成一個Portfolio也是不錯的主意.

總之, 要找一套簡單粗暴, 又可以長期戰勝大盤的投資策略, 阿批會說, 就是他了!!! 雙動能系列.

此文章原始分享於阿批的自由路, 出現在此表示您的網站未經授權轉載.

19 3 月, 2021 1 comment
1 FacebookTwitterPinterestEmail
閱讀筆記

[賺贏大盤的動能投資法] 讀書心得及實驗

by yyp20 19 2 月, 2021

讀書心得

2021/11/14 補注: 請注意本篇在撰寫當時的假設是用MTUM的”現有持股”去做回測, 但MTUM每半年都會換股, 建議到黑石的網站找每月的持股來回測, 結果會大不同.

https://www.blackrock.com/americas-offshore/en/products/251614/ishares-msci-usa-momentum-factor-etf

“要打敗市場如此簡單, 你確定還要指數報酬嗎?“

<賺贏大盤的動能投資法>這本書裡最狂的一句話……

作者Andreas F. Clenow是避險基金經理人, 在這本著作裡, 示範如何回測並建構一支動能交易策略, 並打敗大盤.

書中在建構模型的過程非常強調”資料的正確性“回測大盤最好要考慮現金股利、下市, 和股票分拆.”及持股的分散性, 大概20~30支, 作者覺得差不多, 再多就會和大盤表現貼近, 若太少5~10支則容易受到個股的風險影響(美股沒有漲跌幅限制的….有可能會殺很大..)

“S&P500本身就是一個動能策略“

蛤? 我看錯了嗎? 作者說, 因為要入S&P500必須市值成長到53億美元以上(也就是漲很久了..), 並且在NASDAQ或NYSE掛牌交易, 也就是要漲一段時間才會被選入, 這點也就是動能策略的主要元素”買進上漲中的股票.“

注意”趨勢策略(Trend following)”和”動能策略(Momentum)”還是不同的, 趨勢策略通常會有一條或二條或三條均線去給他當基準, 而均線在盤整時是會失效的, 因此比較適合放在多個相關性低的市場, 互相Cover,

而動能策略就主要是把最會漲的挑出來, 然後加上一個大盤大跌的卡關, 避免大盤走空的時候還持續買股.

作者策略是這樣的:

  1. 用90日漲幅、迴歸斜率及R2找出S&P500中的動能前30名.(也可以是S&P 400, S&P600, 總之要有一個股票池.)
  2. 取前20支持有, 部位大小以ATR決定.
  3. 如果大盤在200日均線以下, 不買股.
  4. 如果個股跌穿100日均線/90日內有跳空15%/從S&P500剔除, 砍!
  5. 每2週(或一個月)再平衡一次.(20支個股要再平衡, 要費一點工夫.)

書中有教怎麼做第1點的Excel表格, 要撈500支S&P500個股的過去90日報價, 再分別計算出斜率和R2, 最好還是要會寫程式比較好.

有趣的是, 作者有比較過只取過去90日漲幅最大的個股, 其實績效和算斜率的個股沒什麼差別, 不過還是嚴謹一點用有斜率和R2的資料, 目的是抓到走勢一致, 沒有暴衝的個股, 作者在平衡波動性這點上很謹慎….若是一般投資人要簡單作就是90日漲幅前20名去買就好了.

個人覺得和Gary Antonaci的Daul momentum滿像的, 就有某種機制挑出強勢股持有, 然後會有一個切換點, 不管是12月報酬還是大盤的200日均線也好, 就是會有一個在大盤不好時跳脫的機制.

總體來說, 阿批還是比較喜歡這種能夠量化的交易手法, 點到出手, 沒有模稜兩可, 也不用去找護城河、經理人品格這種比較難界定的東西,

不過相對而言, 對資料蒐集、資料分析、策略建構的要求就比較高, 程式的能力還是練一下好些, 不然像阿批就有很時候必須靠別人的報告, 或是要牽就網站的格式, 自己想知道的東西就比較不能隨心所欲的去了解….

但量化策略也不是萬能就是了, 回測結果也不見得就一定代表未來, 也是會有過度配適, 或者因為市場改變, 策略失效的問題, 最好還是有多支策略搭在一起用.

不論如何, 任何的投資方式都好, 會長期賺錢就是王道.

1

冠軍策略的隨機選股測試

書中有一個很帥氣的回測, 作者把S&P500裡的個股,每月隨機挑50支持有, 結果竟可以穩定的打盤大盤, “要打敗市場如此簡單, 你確定還要指數報酬嗎?”

阿批不禁好奇起來, 如果在台灣50和台灣中100中就給他挑過去90天最強的20支來抱, 每月更新, 會不會也能海放大盤? 畢竟買高賣更高、強者恒強, 這樣的動能現象在市場裡不是什麼新聞, 也有研究報告指出動能因子能夠長期打盤大盤.

基於工具的限制, 阿批決定用冠軍策略來作實驗.

1

股票池

阿批依作者的建議, 把自己的冠軍策略投資組合, 以MTUM為股票池, 從裡面隨機拉出來50支, 原因是Portfolio visualizer的限制是50支.

延伸閱讀: 真的假的? 真的假的? 1個年複利報酬60%的懶人美股及美股ETF投資組合!?

MTUM本身就是動能型ETF, 從美國大型及中型個股中挑出6個月及12個月內表現強勢的股票, 經過波動性調整後給一個動能分數, 再用市值加權, 決定持股比例, 最大不超過5%, 每半年再平衡一次.

然後再使用冠軍策略, 從50支裡面每月拉最強的12支出來(理由是Portfolio visualizer的限制是50支/12支, 程式段位不夠的悲哀..)

歷史持股資料不可得, 不過可以像作者一樣玩, 阿批把MTUM的121支持股篩選後, 留下2014年前上市的79支(原因是有的2020年才上, 就只有一年資料.., 回測結果就會是一年, 用2014年有7年, 不長不短.).

2021/2 MTUM全121支持股如下, 紅色部份是2015以後才上市的股票, 仔細看還不少是近期的飆股, 像Paypal, Zoom, Roku…等等.

去掉紅字後剩79支如下, 再從79支中隨機挑50支當股票池, 每月持有最強的12支.

1

測試條件及參數

以下冠軍策略實驗均使用單一絕對動能: MTUM, 出場持有資產: VGLT, 持股數:12

切換參數同原版冠軍策略.

Timing Model O 
Time Period O 
Start Year O 
End Year O 
Include YTD O 
Initial Amount O 
Cashflows O 
Tickers O 
Single absolute momentum O 
Absolute momentum asset O 
Out Of Market Asset O 
Specifr out Of market asset 
Performa pe riOdS 
period Weighting O 
previous Month 
Normalize Returns O 
Assets to hold O 
Dual Momentum 
Year-to-year 
1985 
2021 
10000 
TSLA FOX REGN ODFL MSFT DE MTCH CI_X AAPL TGT TT HOLX NVDA BLK HZNP TER AMZN UPS CHTR CONS csGP 
Select asset.. 
VGLT 
Mult$le periods 
Weight performance

1

實驗一:

挑選的50支股票以藍色標示如下:

TSLA FDX REGN ODFL MSFT DE MTCH CLX AAPL TGT TT HOLX NVDA BLK HZNP TER AMZN UPS CHTR CDNS CSGP MPWR TYL ROL ADBE MELI TMUS ENPH NEM SPLK BIO MASI TMO ZTS MRVL VAR GOOG FCX CMI ZG GOOGL ATVI WST TSCO DHR ADSK MTD ALB

Portfolio visualizer回測結果:

毫無懸念的海放大盤, 而且標準差及MDD都很夠水準.

Portfolio 
Dual Momentum Model 
Equal Weight portfolio 
Vanguard 500 Index I nvestor 
stoocco 
Jan 
Initial Balance 
SIO.ooo 
SIO,ooo 
$10,000 
Final Balance 
$85.780 
S64.049 
$22,945 
Jul 2016 
— Dual Momentum 
35.45% 
29.98% 
12.44% 
1786% 
1658% 
Best Year 
138.26% 
8142% 
3133% 
Worst Year 
201% 
015% 
-u 2018 
-11.69% o 
-1370% 
-19.63% 
Ju12019 
Sharpe Ratio 
176 
1.63 
0.85 
Sortino Ratio 
424 
344 
2021 
US Mkt Correlation 
0.47 
0.92 
2014 
Portfolio Growth 
2017 
— Equal Weight 
'm 2019 
— Vanguard 500 Index Investor

1

實驗二:

挑選的50支股票以藍色標示如下:

TSLA FDX REGN ODFL CRM IDXX EPAM MKTX MSFT DE MTCH CLX NKE ALGN MSCI SGEN AAPL TGT TT HOLX QCOM SNPS BLL FBHS NVDA BLK HZNP TER NOW NXPI ANSS WHR AMZN CHTR CSGP TYL UPS CDNS MPWR ROL ADBE TMUS NEM BIO MELI ENPH SPLK MASI TMO ZTS

Portfolio visualizer回測結果:

Dual Mornentum Model 
Equal Weight portfolio 
Vanguard 500 Imlex Investor 
Sloc,ooo 
swooo 
S60.ooo 
S40,ooo 
s20,ooo 
Initial Balance 
$10,000 
$10,000 
$10,000 
Jul 2015 
Final Balance 
$93,752 
$70,173 
$22,945 
CAGR 
37, 
3166% 
12.44% 
17.55% 
16.70% 
14.12% 
Best Year 
113.94% 
78.28% 
Worst Year 
042% 
-151% 
2018 
Max. Drawdown 
-15.03% o 
-14.16% 
-19.63% 
Sharpe Ratio 
170 
0.85 
JL. 2020 
Sortino Ratio 
2021 
US Mkt Correlation 
0.48 
0.91 
portfolio Growth 
Jan 2014 
Jul 2014 
2015 
2016 
Jul 2016 
31133% 
2018 
2017 
— Equal weignt 
Jul 2017 
2019 
M 2019 
— Dual Momentum Model 
— Vanguard 5m Intel Investo«

1

實驗三:

挑選的50支股票以藍色標示如下:

TSLA CRM FDX IDXX REGN MSFT NKE DE ALGN MTCH AAPL QCOM TGT SNPS TT NVDA NOW BLK NXPI HZNP AMZN UPS CHTR CDNS CSGP ADBE MELI TMUS ENPH NEM TMO NEE ZTS LULU MRVL GOOG LOW FCX GNRC CMI GOOGL COST ATVI DG WST DHR AMD ADSK A MTD

Portfolio visualizer回測結果:

Portfolio 
Dual Momentum Model 
Equal Weight Portfolio 
Vanguard 500 Index Investor 
s200,ooo 
S100,ooo 
SB0,ooo 
S60,000 
sac,ooo 
20,000 
"0.000 
segoo 
Initial Balance 
SIO,ooo 
SIO,ooo 
SIO,ooo 
Jul 2015 
Final Balance 
Sli6,243 
S67,725 
S22,945 
CAGR 
4139% 
3100% 
1244% 
Stdev 
1890% 
1680% 
1412% 
Best Year 
13218% 
7842% 
3133% 
Worst Year 
1.65% 
-014% 
Jul 2018 
Max. Drawdown 
.1783% 
.1465% O 
-19.63% 
Sharpe Ratio 
Sortino Ratio 
345 
135 
Jan 2021 
US Wt Correlation 
0.49 
0.93 
l.oo 
Portfolio Growth 
Jan 2014 
Jul 2014 
2015 
2016 
Ju12016 
2017 
Jul 2017 
Yea r 
Jan 2018 
2019 
2019 
2020 
Jul 2020 
— Dual Momentum Model 
— Equal weignt Portrolio 
— Vanguard 500 Index Investor

1

實驗四:

挑選的50支股票以藍色標示如下:

IDXX REGN EPAM ODFL MKTX ALGN MTCH MSCI CLX SGEN SNPS TT BLL HOLX FBHS NXPI HZNP ANSS TER WHR CDNS CSGP MPWR TYL ROL ENPH NEM SPLK BIO MASI LULU MRVL ROK VAR BRO GNRC CMI POOL ZG ERIE DG WST RMD TSCO NFLX A MTD PKI ALB ADSK

Portfolio visualizer回測結果:

Final Balance 
Dual Momentum Model 
Equal Weight Portfolio 
Vanguard 500 Index I nvestor 
Initial Balance 
SIO,ooo 
SIO,ooo 
SIO,ooo 
Jul 201S 
CAGR 
31.61% 
29.12% 
12.44% 
15.73% 
16.32% 
14.12% 
Best Year 
80.96% 
69.92% 
Worst Year 
Max. Drawdown 
1350% O 
.1262% O 
.1963% 
Sharpe Ratio 
1.79 
0.85 
Jul 2020 
Sortino Ratio 
3.51 
Jan 2021 
US Mkt Correlation 
s70.oco 
S60000 
SS-Otto 
sao.ooo 
syo.ooo 
S2•oooo 
Jan 2014 
Jul 2014 
Jan 201S 
Jan 2016 
s69,974 
S61,140 
S22,g45 
2016 
Portfolio Growth 
Jan 2017 
Ju120t7 
31.33% 
Jan 2018 
— Vanguar SOO Index 
2019 
Jul 2019 
— Dual Momentum 
— Equal Weight portfolio

1

實驗五:

挑選的50支股票以藍色標示如下:

REGN MKTX MSFT NKE DE ALGN MTCH MSCI CLX SGEN SNPS HOLX NVDA NOW BLK NXPI HZNP ANSS TER WHR CHTR MPWR ADBE MELI TMUS ENPH NEM SPLK BIO MASI NEE MRVL GOOG LOW FCX GNRC CMI POOL ZG ERIE GOOGL DG TSCO DHR AMD ADSK A MTD PKI ALB

Portfolio visualizer回測結果:

Best Year 
10295% 
Duel Momentum Model 
Equal Weight Portfolio 
Vanguard 500 It%fex Investor 
Balance 
SIO,ooo 
SIO,ooo 
SIO,ooo 
Jul 
Final 
S78,294 
$65,601 
$22,945 
CAGR 
33.71% 
3042% 
1244% 
1722% 
1705% 
1412% 
Worst Year 
145% 
010% 
Jul 2018 
Max. Drawdown 
o 
-17.55% 
o 
-1263% 
o 
-19.63% 
Sharpe Rado 
Jan 2020 
Ratio 
321 
135 
Jan 2021 
US Wt Correlation 
0.44 
0.91 
1.00 
90,000 
S80,000 
S70,ooo 
S60,ooo 
c S50,ooo 
S40,ooo 
S30,ooo 
S20.000 
SIO.000 
Jan 
2014 
Jan 201S 
Jan 2016 
Jul 2016 
Portfolio Growth 
Jan 201' 
— Equal Weight Portfolio 
3133% 
Jan 2018 
Jan 2019 
2019 
— Dual Momentum Mode-I 
— Vanguard 500 Investor

1

實驗六:

挑選的50支股票以藍色標示如下:

NVDA NXPI TER AMZN UPS CHTR CDNS CSGP MPWR TYL ROL ADBE MELI TMUS ENPH NEM SPLK BIO MASI TMO NEE ZTS LULU MRVL ROK VAR BRO GOOG LOW FCX GNRC CMI POOL ZG ERIE GOOGL COST ATVI DG WST RMD TSCO NFLX DHR AMD ADSK A MTD PKI ALB

Portfolio visualizer回測結果:

Dual Momentum Model 
Equal Weight Portfolio 
Vanguard 500 Itufex Investor 
Initial Balance 
SIO.ooo 
SIO.ooo 
$10,000 
Ju12015 
Final 
$72,293 
$63.138 
$22,945 
2016 
Jul 2016 
— Dual Momentum Model 
CAGR 
3222% 
2971% 
1244% 
1725% 
1605% 
1412% 
Best Year 
10001% 
7054% 
3133% 
Worst Year 
163% 
Jul 2018 
Max. Drawdown 
-16.59% 
-1436% O 
-1963% 
Sharpe Rae o 
Jan 2020 
Sortino Ratio 
323 
353 
135 
Jan 2021 
US Wt Correlation 
0.45 
0.92 
1.00 
Portfolio Growth 
"0.000 
S60,ooo 
sso,ooo 
sao.ooo 
"0.000 
S20,ooo 
SIO,ooo 
2-014 
Jul 2014 
2015 
2017 
J. 2017 
Jan 2018 
2019 
2019 
— Equal weignt Portrolio 
— Vanguard 500 Index Investor

1

實驗七:

挑選的50支股票以藍色標示如下:

CRM IDXX EPAM MKTX MSFT NKE DE ALGN MTCH MSCI CLX SGEN QCOM SNPS BLL FBHS NVDA BLK HZNP TER AMZN UPS CHTR CDNS CSGP MPWR TYL ROL ADBE TMUS NEM BIO NEE LULU ROK BRO LOW FCX GNRC POOL ZG ERIE COST DG RMD NFLX DHR ADSK MTD ALB

Portfolio visualizer回測結果:

Final Balance 
Dual Momentum Model 
Equal Weight Portfolio 
Vanguard 500 Investor 
S70.000 
S60.000 
sso,ooo 
S30,ooo 
S20.ooo 
SIO.000 
SIO,ooo 
SIO,ooo 
SIO,ooo 
Jul 201S 
CAGR 
26.98% 
2014% 
12.44% 
16.79% 
1560% 
14.12% 
Be St Year 
73.14% 
6855% 
31.33% 
Worst Year 
-2.11% 
2018 
Max. Drawdown 
-1$05%0 
-1063% o 
Sharpe Ratio 
169 
085 
Jul 2020 
Sortino o 
2.60 
3.51 
1.35 
LIS Mkt Correlation 
201S 
Jan 2016 
$54,308 
S61,200 
S22,945 
Jul 2016 
Portfolio Growth 
2017 
— Equal Weight 
Ju12017 
Jan 2019 
Ju12019 
— Dual Momentum 
— Vanguard SOO Index Investor

1

實驗八:

挑選的50支股票以藍色標示如下:

TSLA CRM FDX IDXX REGN EPAM ODFL MKTX MSFT MSCI SGEN AAPL QCOM TGT SNPS TT BLL FBHS NVDA BLK ANSS WHR AMZN CHTR MPWR ROL ADBE TMUS SPLK MASI TMO ZTS ROK BRO GOOG FCX GNRC CMI POOL ERIE GOOGL ATVI NFLX DHR AMD ADSK A MTD PKI ALB

Portfolio visualizer回測結果:

Portfolio 
Dual Momentum Model 
Equal Weight portfolio 
Vanguard 500 Investor 
S70.ooo 
S60.ooo 
S50,000 
sao,ooo 
S30,ooo 
S20.000 
SIO.000 
20 la 
Initial Balance 
$10,000 
$10,000 
$10,000 
Jul 201S 
Final Balance 
$56,565 
558.224 
$22,945 
Jan 2016 
Jul 2016 
— Dual Momentum Model 
CAGR 
27.72% 
2824% 
12.44% 
17.46% 
16.91% 
14.12% 
Best Year 
76.45% 
67.70% 
Worst Year 
Jul 2018 
Max. Drawdown 
-15, 
-15.36% 
-lg.63% 
Sharpe Ratio 
1,45 
1,52 
0.85 
Sortino Ratio 
US Mkt Correlation 
0.92 
Portfolio Growth 
201S 
2017 
Jul 2017 
31.33% 
2018 
— Vanguard 500 
Jan 2019 
hi 2019 
Jan 2D2c 
Jul 2020 
— Equal Weight PortWO

1

實驗九:

2007年以前上市的共62支, 挑紅字的50支.

FDX IDXX REGN ODFL MKTX DE ALGN MTCH CLX SGEN QCOM TGT SNPS TT BLL HOLX BLK ANSS TER WHR UPS CDNS CSGP MPWR TYL ROL NEM BIO NEE MRVL ROK VAR BRO LOW FCX CMI POOL ERIE COST ATVI WST RMD TSCO NFLX AMD ADSK A MTD PKI ALB

Portfolio visualizer回測結果:

Portfolio 
Dual Momentum Model 
Equal Weight Portfolio 
Vanguard 500 Index Investor 
Initial Balance 
SIO,ooo 
SIO,ooo 
SIO,ooo 
Jul 
Final Balance 
CAGR 
2211% 
2556% 
12.44% 
Best Year 
1588% 
1582% 
14.12% 
Worst Yea r 
1.01% 
.1T81%O 
1390% O 
1063% O 
Jul 2019 
Sharpe Ratio 
130 
148 
085 
Jul 2020 
Sortino Ratio 
2.17 
1.35 
Jan 2021 
US Mkt Correlation 
S60,ooo 
sso,ooo 
S40.000 
S30,ooo 
S20,ooo 
SIO.000 
Jan 
Jul 2014 
Jan 201S 
Jan 2016 
S41,160 
S50,138 
S22,g45 
Jul 2016 
Portfolio Growth 
Jan 2017 
Ju120t7 
6165% 
31.33% 
Jan 2018 
2019

由於想看一下策略在金融海嘯時的表現, 阿批把單一絕對動能換成VFINX(S&P500的美國境內基金), 出場持有資產換成VUSTX(美國長期債券基金).

Tickers O 
Single absolute momentum O 
Absolute momentum asset O 
Out Of Market Asset O 
SpeciW out Of market asset 
Performa Ce 
period Weighting O 
previous Month O 
Normalize Returns O 
Assets to hold O 
FDX loxx REGN ODFL MKTX DE ALGN MTCH CLX SCEN OCOM TGT SNPS TT BLL HOLX BLK ANSS TER WHR UPS CD 
VFINX 
Select asset 
VUSTX 
Mult$le periods 
Weight performance

結果, 經歷海嘯不論在報酬率和年報酬都很堅挺, 同時期原版冠軍策略的複合年報酬率是15.94%, MDD是-19.67%, 標準差13.61%.

US Mkt Correlation 
Dual Momentum Model 
Equal Weight Portfolio 
Vanguard 500 Index I nvestor 
stooooo 
"0000 
succo 
Initial Balance 
SIO,ooo 
SIO,ooo 
SIO,ooo 
Final Balance 
$166,545 
$173,865 
"9,958 
— Dual Momentum Model 
CA GR 
20.50% 
20.84% 
9.62% 
Std ev 
15.87% 
17.84% 
15.08% 
Best Year 
61.55% 
32.18% 
Worst Year 
.087% 
-3127% 
.37.02% 
.17.81%0 
.42.76% O 
.50.97% 
2018 
Sharpe Ratio 
109 
061 
2019 
Sortino Ratio 
2.16 
0.90 
Portfolio Growth 
2014 
— Weight 
— Vanguard Index Investor

1

實驗十:

挑選的50支股票以藍色標示如下:

TSLA FDX IDXX REGN ODFL MKTX MSFT NKE DE MTCH MSCI CLX AAPL QCOM SNPS TT BLL FBHS NOW BLK NXPI ANSS TER WHR AMZN CHTR CDNS CSGP TYL ADBE MELI TMUS NEM BIO NEE LULU ROK BRO LOW GNRC POOL ERIE GOOGL ATVI WST TSCO DHR ADSK MTD ALB

Portfolio visualizer回測結果:

Portfolio 
Dual Momentum Model 
Equal Weight Portfolio 
Vanguard 500 Index Investor 
yo. 000 
so. 000 
$50. ooo 
"0.000 
o "0.000 
$20,000 
$10,000 
Jul 
Initial Balance 
Slotooo 
SIO,ooo 
SIO,ooo 
Ju120t5 
Final Balance 
CAGR 
2937% 
2746% 
12.44% 
Stdev 
1591% 
1567% 
14.12% 
Best Year 
8445% 
6035% 
3133% 
Worst Year 
Jul 2018 
Max. Drawdown 
-1201% 
-1288% 
-1963% 
Sharpe Ratio 
1.59 
0.85 
Sortino Ratio 
2021 
US Mkt Correlation 
093 
Jan 20'S 
2016 
$611967 
$55,767 
$22,945 
Jul 2016 
Portfolio Growth 
Jm2017 
Ju12017 
Jan 2018 
Jan 2019 
hi 2019 
Jan 2020 
Jul 2020 
— Dual Model 
— Equal Weight Portfolio 
— Vanguard 500 Investor

1

結論

在股票池裡隨機選股, 真的隨便都可以海放大盤ㄟ….

這樣我想可以一定程度的證明動能策略的是有作用的, 在適當的股票池裡去隨機選股的確能幹掉大盤, 特別作者是有考慮到S&P 500的持股變化, 那麼回測的效度就更高.

但MTUM是每半年調一次持股, 這回持股121支中近3年上市(2019,2020,2021)的個股就有17支, 佔14.05%, 在這樣的狀況下, 2014年的MTUM持有的強勢股到底和現在有多大的不同無從得知, 只能說這個實驗是假設股票池從2014年就是一樣的, 從裡面隨機挑股還是能夠有不錯的績效, 讓阿批確認了相對動能的有效性.

2021/11/14 補注: 請注意本篇在撰寫當時的假設是用MTUM的”現有持股”去做回測, 但MTUM每半年都會換股, 建議到黑石的網站找每月的持股來回測, 結果會大不同.

考量冠軍策略本身自帶的擇強持有、閃避空頭盤的能力, 以及不管MSCI, 亦或本書的作者的對動能策略回測, 亦或阿批自己的實驗及回測經驗, 我想這個模式還是值得一試的, 歐印…沒啦…就倉位不要太大, 風控做好就可以了.

最後警世一下, 如同作者說的, 組合太少會有個股風險, 也確實看到了, 在沒有漲跌幅限制的美股….滿恐怖..買進個股時永遠要記得考慮風險, 適度分散才是.

56 Nov2018 
55 Oct 2018 
Jan 2019 
Oct 2018 
3 Vanguard Long-Term Treasury ETF (VGLT) 
1 8.33%Apple Inc (AAPL) 
833% Align Technology, Inc (ALGN) 
833% Advanced Micro Devices. Inc (AMD) 
8.33% Arnazon.com. Inc (AMZN) 
8 33% Activision Blizzard, Inc (ATV') 
833% Salestorcecom Inc (CRM) 
833% Horizon Therapeutics PLC (HZNP) 
b Lowe's Companies, Inc (LOW) 
833% lululemon athletica inc (LULU) 
833% Match Group, Inc (MTCH) 
8.33% QUALCOMM IncÆrporated (QCOM) 
8.33% West Pharmaceutical Services, Inc (WST) 
VGLT: 809% 
AAPc -3.05% 
ALGN: -4346% 
AMD: -41.05% 
AMZN[ -20.22% 
ATVI: -17 
CRU -1370% 
HZNP: -700% 
LOW -1666% 
LULLL -1339% 
MTCH: -029% 
QCOM; -12 
WST: -1410% 
508% 
-1763%

前一篇的組合正犯了欠缺分散性的誤區, 在此也把他修正過來.

延伸閱讀: 真的假的? 真的假的? 1個年複利報酬60%的懶人美股及美股ETF投資組合!?

1

<賺贏大盤的動能投資法> 本身是”小資族ETF狠會賺投資法“的推薦閱讀書目, 看了才知道老師用心良苦啊….

19 2 月, 2021 1 comment
0 FacebookTwitterPinterestEmail

Recent Posts

  • 美股傻瓜投資法 by 部門別ETF

    12 1 月, 2023
  • 極簡生活投資法

    27 12 月, 2022
  • [冠軍思維]-讀書心得-成為最頂尖的自己!

    13 12 月, 2022
  • [檯面下我是這樣投資]讀書心得-投資應該是人生最輕鬆的事

    30 11 月, 2022
  • [財務自由實踐版step by step]閱讀心得-地理套利是王道

    14 11 月, 2022

Categories

  • F.I.R.E (1)
  • 交易 (5)
  • 學習筆記 (4)
  • 投資 (10)
  • 閱讀筆記 (15)
  • Facebook
  • Twitter
  • Instagram
  • Pinterest
  • Tumblr
  • Youtube
  • Bloglovin
  • Snapchat

@2019 - All Right Reserved. Designed and Developed by PenciDesign


Back To Top